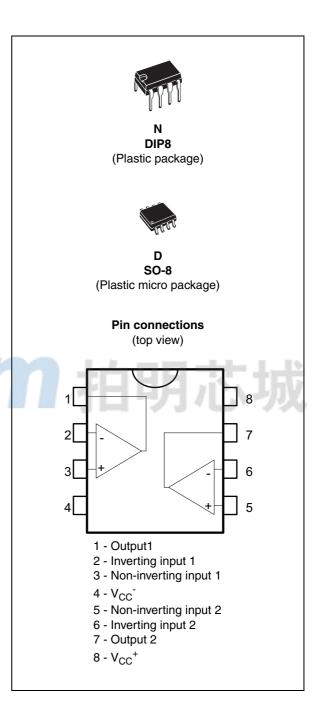
阅读申明

- 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。
- 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
- 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。
- 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。

Read Statement

- 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner.
- 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information.
- 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard.
- 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets" .

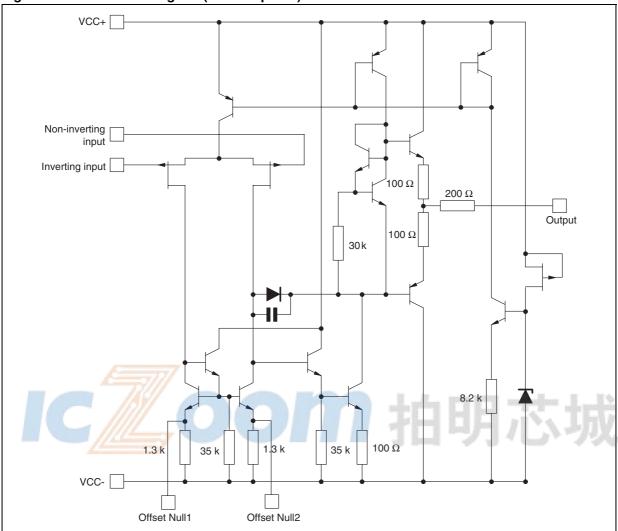
Wide bandwidth dual JFET operational amplifiers


Features

- Low power consumption
- Wide common-mode (up to V_{CC}⁺) and differential voltage range
- Low input bias and offset current
- Output short-circuit protection
- High input impedance JFET input stage
- Internal frequency compensation
- Latch up free operation
- High slew rate 16 V/µs (typical)

Description

These circuits are high speed JFET input dual operational amplifiers incorporating well matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit.


The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.

Schematics LF253, LF353

1 Schematics

Figure 1. Schematic diagram (each amplifier)

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	±18	V
V _i	Input voltage ⁽²⁾	±15	V
V _{id}	Differential input voltage ⁽³⁾	±30	V
R _{thja}	Thermal resistance junction to ambient ⁽⁴⁾ SO-8 DIP8	125 85	°C/W
R _{thjc}	Thermal resistance junction to case ⁽⁴⁾ SO-8 DIP8	40 41	°C/W
	Output short-circuit duration ⁽⁵⁾	Infinite	
T _{stg}	Storage temperature range	-65 to +150	°C
	HBM: human body model ⁽⁶⁾	1	kV
ESD	MM: machine model ⁽⁷⁾	200	V
	CDM: charged device model ⁽⁸⁾	1.5	kV

All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}⁺ and V_{CC}⁻.

- 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
- The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded
- Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 8. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

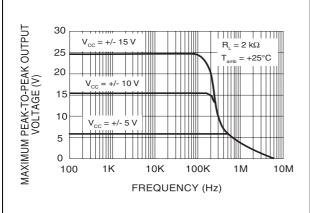
Symbol	Parameter	LF253	LF353	Unit
V _{CC}	Supply voltage	6 to 36		V
T _{oper}	Operating free-air temperature range	-40 to +105	0 to +70	°C

Electrical characteristics LF253, LF353

3 Electrical characteristics

Table 3. Electrical characteristics at $V_{CC} = \pm 15 \text{ V}$, $T_{amb} = +25^{\circ}\text{C}$ (unless otherwise specified)

Symbol	Parameter		Тур.	Max.	Unit
V _{io}	Input offset voltage ($R_s = 10k\Omega$)		3	10	mV
- 10	$T_{min} \le T_{amb} \le T_{max}$			13	
DV _{io}	Input offset voltage drift		10		μV/°C
l _{io}	Input offset current (1)		5	100	pΑ
10	$T_{min} \le T_{amb} \le T_{max}$			4	nA
I _{ib}	Input bias current (1)		20	200	pA
	$T_{min} \le T_{amb} \le T_{max}$		200	20	nA
A _{vd}	Large signal voltage gain $(R_L = 2k\Omega, V_0 = \pm 10V)$	50 25	200		V/mV
	$T_{min} \le T_{amb} \le T_{max}$		00		
SVR	Supply voltage rejection ratio ($R_S = 10k\Omega$) $T_{min} \le T_{amb} \le T_{max}$	80 80	86		dB
	Supply current, no load	00	1.4	3.2	
I _{CC}	T _{min} \leq T _{amb} \leq T _{max}		1.4	3.2	mA
		±11	+15	0.2	
V _{icm}	Input common mode voltage range		-12		V
CMR	Common mode rejection ratio ($R_S = 10k\Omega$)		86		dВ
CIVIN	$T_{min} \le T_{amb} \le T_{max}$	70			dB
Ios	Output short-circuit current	10	40	60	mA
ios	$T_{min} \le T_{amb} \le T_{max}$	10		60	1 15
	Output vo <mark>ltage</mark> swing	10	7	10	THU
	$R_{L} = \frac{2k\Omega}{R_{L}}$ $R_{L} = \frac{10k\Omega}{R_{L}}$	10 12	12 13.5	- J. V	プス
±V _{opp}	$T_{\min} \le T_{\min} \le T_{\max}$	12	10.5		V
	$R_L = 2k\Omega$	10			
	$R_L = 10k\Omega$	12			
SR	Slew rate, $V_i = 10V$, $R_L = 2k\Omega$, $C_L = 100pF$, unity gain	12	16		V/µs
t _r	Rise time, $V_i = 20$ mV, $R_L = 2$ k Ω , $C_L = 100$ pF, unity gain		0.1		μs
K _{ov}	Overshoot, $V_i = 20mV$, $R_L = 2k\Omega$, $C_L = 100pF$, unity gain		10		%
GBP	Gain bandwidth product, f = 100kHz, V_{in} = 10mV, R_L = 2k Ω , C_L = 100pF	2.5	4		MHz
R _i	Input resistance		10 ¹²		Ω
THD	Total harmonic distortion, f= 1kHz, A_V = 20dB, R_L = 2k Ω , C_L =100pF, V_0 = 2 V_{pp}		0.01		%
0	Equivalent input noise voltage		15		nV
e _n	$R_S = 100\Omega$, $f = 1KHz$		13		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
Øm	Phase margin		45		Degrees
V_{o1}/V_{o2}	Channel separation ($A_v = 100$)		120		dB


^{1.} The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature.

4/15 Doc ID 2153 Rev 3

LF253, LF353 Electrical characteristics

Figure 2. Maximum peak-to-peak output voltage vs. frequency, $R_L = 2 k\Omega$

Figure 3. Maximum peak-to-peak output voltage vs. frequency, $R_L = 10 \text{ k}\Omega$

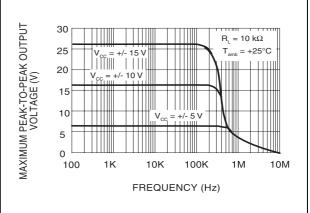
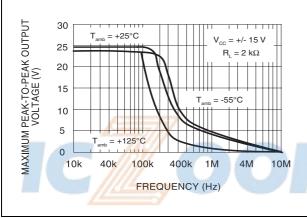



Figure 4. Maximum peak-to-peak output voltage versus frequency

Figure 5. Maximum peak-to-peak output voltage versus free air temperature

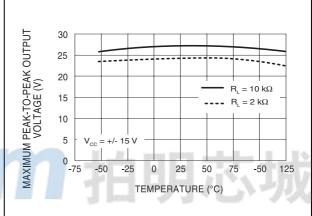
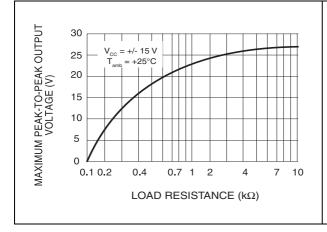
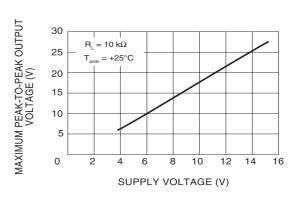
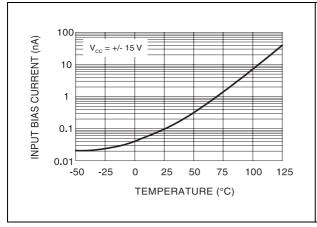




Figure 6. Maximum peak-to-peak output voltage versus load resistance

Figure 7. Maximum peak-to-peak output voltage versus supply voltage

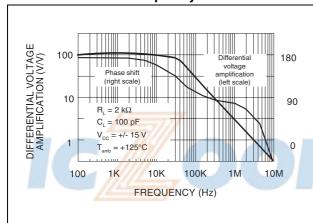
577


Doc ID 2153 Rev 3

5/15

Electrical characteristics LF253, LF353

Figure 8. Input bias current versus free air temperature


Figure 9. Large signal differential voltage amplification versus free air temp.

1000 DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V) 400 200 100 40 20 10 $V_{CC} = +/-15 \text{ V}$ $V_0 = +/-10 \text{ V}$ 4 $R_L = 2 k\Omega$ 2 100 125 -75 -50 TEMPERATURE (°C)

Figure 10. Large signal differential voltage amplification and phase shift versus frequency

Figure 11. Total power dissipation versus free air temperature

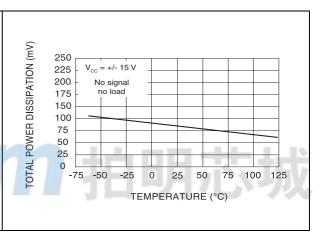
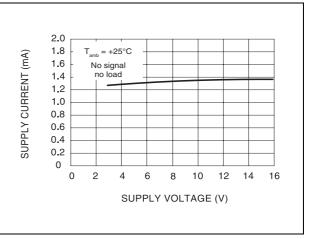



Figure 12. Supply current per amplifier versus Figure 13. Supply current per amplifier versus free air temperature supply voltage

6/15 Doc ID 2153 Rev 3

LF253, LF353 Electrical characteristics

Figure 14. Common mode rejection ratio versus free air temperature

Figure 15. Voltage follower large signal pulse response

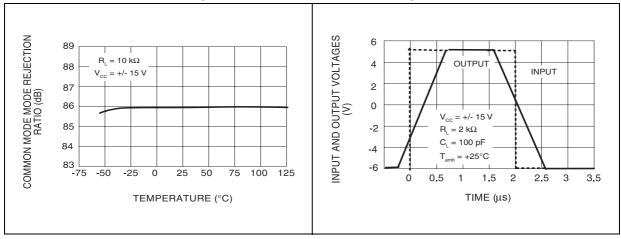


Figure 16. Output voltage versus elapsed time Figure 17. Equivalent input noise voltage versus frequency

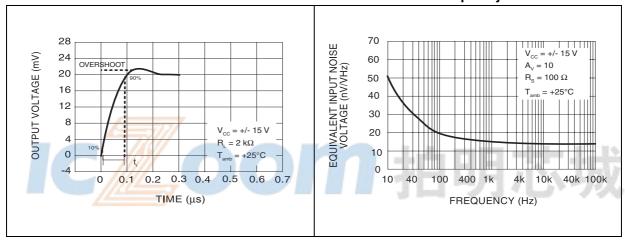
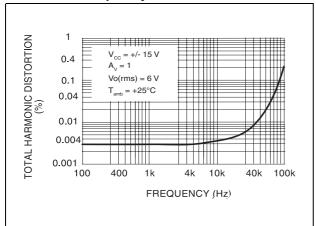
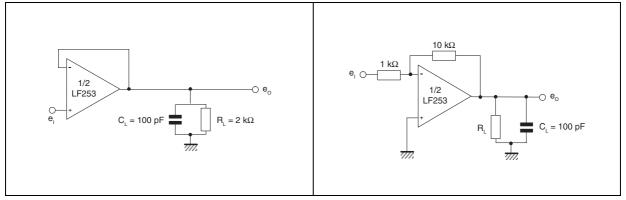



Figure 18. Total harmonic distortion versus frequency

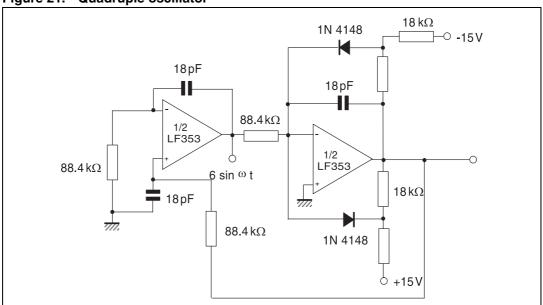

577

Doc ID 2153 Rev 3

4 Parameter measurement information

Figure 19. Voltage follower

Figure 20. Gain of 10 inverting amplifier



LF253, LF353 Typical application

5 Typical application

Figure 21. Quadruple oscillator

Package information LF253, LF353

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

577

LF253, LF353 Package information

6.1 DIP8 package information

Figure 22. DIP8 package mechanical drawing

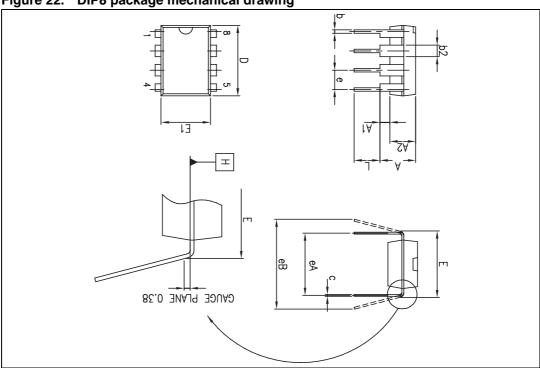


Table 4. DIP8 package mechanical data

188	Dimensions					
Ref.		Millimeters		7HI	Inches	\ Jhv
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
С	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	10.16	0.355	0.365	0.400
E	7.62	7.87	8.26	0.300	0.310	0.325
E1	6.10	6.35	7.11	0.240	0.250	0.280
е		2.54			0.100	
eA		7.62			0.300	
eB			10.92			0.430
L	2.92	3.30	3.81	0.115	0.130	0.150

Doc ID 2153 Rev 3 11/15

Package information LF253, LF353

6.2 SO-8 package information

Figure 23. SO-8 package mechanical drawing

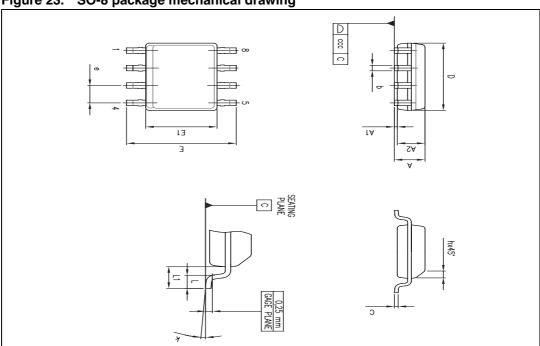


Table 5. SO-8 package mechanical data

	Dimensions					
Ref.	Millimeters		77	Inches		- 1-11:
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	-		1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	1°		8°	1°		8°
ccc			0.10			0.004

12/15 Doc ID 2153 Rev 3

7 Ordering information

Table 6. Order codes

Order code	Temperature range	Package	Packing	Marking
LF253N		DIP8	Tube	LF253N
LF253D LF253DT	-40°C, +105°C	SO-8	Tube or Tape & reel	253
LF353N		DIP8	Tube	LF353N
LF353D LF353DT	0°C, +70°C	SO-8	Tube or Tape & reel	353

Revision history LF253, LF353

8 Revision history

Table 7. Document revision history

Date	Revision	Changes
01-Mar-2001	1	Initial release.
08-Sep-2008	2	Updated document format. Removed information concerning military temperature range (LF153). Added L1 parameter dimensions in <i>Table 5: SO-8 package mechanical data</i> .
25-Mar-2010	3	Corrected error in <i>Table 6: Order codes</i> : LF253N, LF253D, LF353N and LF353D proposed in tube packing.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 2153 Rev 3 15/15